Developing a data-driven Machine Learning model to detect cutting tool wear for machine component manufacturers

For an optimal production process, it is important that all machines are running correctly and timely. Machine cutting tool wear or breakage could interrupt a flowing process, damage products, or cause machine downtime. To prevent late awareness of cutting tool wear or breakage, machining businesses should pay attention to timely replacement. On the other hand, if tools are replaced too soon, they are not used to their full extent, which is a waste. Therefore, accurate cutting tool health status estimation is an important aspect of machining industries, as it can help save resources and improve efficiency.

Finding the right timing for worn tool replacement is a common challenge among machine component manufacturers, such as Hankamp Gears, located in Enschede, Zuidberg in Ens, and Holga Metaaltechniek from Doetinchem. Together with the German company gemineers, they form the consortium for the AMP-subsidised research project called ToolCM, which is short for Tool Condition Monitoring. Holga Metaaltechniek, Hankamp Gears, and Zuidberg will work on this use case in their own production environment. The project will focus on two machine types: a milling machine and a gear hobbing machine. Gemineers, a spinoff of Fraunhofer, will be responsible for the data acquisition and data provision as base for the Machine Learning model development.

It is challenging to accurately predict the tool’s Remaining Useful Lifespan (RUL) when the machining operations are performed on a variety of material types and operating conditions. The use of predictive maintenance strategies for this is beneficial; they rely on real-time data and advanced algorithms to find patterns in cutting tool degradation over time and estimate an optimal wear threshold to proactively schedule maintenance before failure occurs. During the ToolCM project, the consortium will work on process parallel, in-line machine sensor data during production.

The aim of the project is to develop a data-driven Machine Learning model to estimate cutting tool health and demonstrate the functionality of an early warning signal when a tool needs replacement using a user-friendly dashboard. The software can provide insights about the cutting tool wear status that is too early for replacement or is causing downtime. This can lead to extended research toward accurate prediction of a RUL. Eventually, this method can be extended to other maintenance applications of engineering systems.

Industry partners

APPROACH

The ToolCM project is a collaboration between machining experts and data specialists, focused on real-world application in milling and gear hobbing machines. Central to the project is implementing advanced data acquisition systems to capture in-built machine sensor data during production. This data underpins the development of robust data-driven algorithms, including conventional and machine learning models, to improve cutting tool health assessment and predict Remaining Useful Lifespan (RUL), enabling proactive maintenance strategies.

A key outcome is a user-friendly dashboard providing early alerts for tool replacement based on predictive maintenance algorithms. The project is structured into four essential work packages: evaluating current production technologies, establishing a comprehensive data acquisition infrastructure, conducting targeted data collection during production, and analysing the data to validate the model. The ToolCM project aims to deliver a proof-of-concept dashboard for predicting tool failure in milling and gear hobbing processes.

OUTCOME

The project successfully addressed the challenge of detecting tool wear in machine component manufacturers. Through four main work packages, the project achieved the following:

• Identified and collected data of production operations, such as gear hobbing and milling, in different production conditions
• Implementation of data acquisition systems through the machine control interface from in-build machine sensors
• Created a user-friendly dashboard for tool health analysis

The proof-of-concept dashboard reflects real-time measurements of multiple process variables to make an informed decision in machining tool replacement. The current dashboard functionalities demonstrated potential for industrial usage
in serial production. The results from ToolCM offer opportunities to support machining operators in making data-informed decisions on overall tool health and tool wear distribution.

This project was made possible through the Regio Deal supported by the Province of Overijssel and the Dutch State.

FOR MORE INFORMATION ABOUT THE TOOLCM PROJECT, PLEASE FEEL FREE TO REACH OUT TO

Hari Subramani

Hari Subramani Palanisamy

Research Engineer

Barry te Dorsthorst

Barry te Dorsthorst

Research Engineer

Carsten Holst

Project Engineer - Fraunhofer IPT