
THE DIGITAL 
TRANSFORMATION
IN STEEL MANUFACTURING

Introduction 
The history of making iron goes back 
more than 3000 years; it was then 
produced and used only locally and 
incidentally. Steelmaking in larger 
volumes only started in the second half 
of the 19th century. In the Netherlands, 
large volume ironmaking began in 
1924 with the commissioning of the 
first blast furnace in IJmuiden, after the 
foundation of the company Koninklijke 
Nederlandsche Hoogovens in 1918. 
The industrial site has expanded ever 
since and has become an integrated 
site comprising about 20 individual 
factories. With its production capacity 
exceeding 7 Mtonnes of steel per year, 
the IJmuiden site is positioned in the top 
3 of steel production sites in Europe.  

The first steps in process automation 
were made in 1965 with the purchase 
of a “Programmable Data Processor” 
PDP-5 computer, which was used to 
make calculations on the spectral lines 
from an arc discharge on a steel sample 
to deduce its composition and detect 
unwanted impurity elements. In 1980, 
still, only 20 – 30 “powerful” PDP-8 
computers were used for dedicated 
automation tasks at the site. Late ‘80s 
and early ‘90s the use of computers and 
programmable logic controllers (PLCs) 
in process automation took off.  

In these early times of automation, 
the individual factories had their own 
IT systems and local networks since 
the IT infrastructure was only meant 
for local process control and product 
logistics. In recent years, a rapid 
transformation has occurred, where 
IT systems have been modernized, 
interconnected and through-process 
data were aggregated. This allowed 
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for through-process data analysis 
and through-process optimisation 
of product quality and logistics. The 
importance of harmonisation of data 
and IT infrastructures is of particular 
importance when one realises that for 
a single steel product, the supply chain 
consists of about 9 factories to convert 
the iron ore into coils of zinc-, tin- or 
nickel-coated steel strip (“endless” flat 
plate) for automotive, construction and 
battery sectors. 

These days, all sensor data and 
process data are aggregated in 
databases. They can be accessed in 
near-real time at the point of origin, and 
within minutes, the same (non-image) 
data is available to all data specialists 
over the entire site. The time-scale 
for image type data is similar, but 
bandwidth and storage capacity limit 
access. These data are not typically 
stored indefinitely and analysis 
algorithms are normally carried out at 
the source. Per day, 1-2 TB of data is 
collected. Major challenges to overcome 
were in synchronising of these data 
through the production chain to ensure 
that it corresponds to the same physical 
section of the product. 

Prospects for Big Data 
in steel manufacturing 
The initial reason for collecting all 
data was to carry out evidence-based 
checks on the product quality and to 
learn which deviations of the designed 
process conditions occur and which 
effects these have on the product, 
the process itself and the subsequent 
production processes, including root 
cause analysis studies. These tasks 
of learning and validation are still 
predominantly carried out by humans 
with the help of computers but are 
expected to become gradually taken 
over by artificial intelligence and expert 
systems. 

The collection and connection of all 
process and product data over the 
entire manufacturing chain have 
additional benefits, such as: 

 • Use of Big Data (literature data 
and proprietary data) for new 
product development. Here 
the challenge is to find the right 
chemical composition and recipe 
to achieve the required properties 
and to create a “machine” for 
predictions on microstructure-
property relations of new (not yet 
realised) products.  

 • Improvement of models used for 
process control. The wide variety 
of steel manufacturing processes 
involve many models to master 
these processes. Process control 
models are generally based on 
theoretical models from literature 
complemented with laboratory 
testing results and experience from 
full-scale plant production. Big data 
support the further development, 
adaptation and validation of these 
models.  

Whereas the priority is on 
scientific understanding of the 
physics, chemistry and metallurgy 
during the production processes, 
certain products with complex 
microstructures in combination with 
less-controlled process conditions 
profit from an approach where large 
amounts of data are aggregated 
and analysed with black box 
techniques like neural networks to 
provide more accurate predictions. 
These data-driven black box 
models can be used as local or 
temporary solutions in certain 
complicated cases where analytical 
models do not (yet) achieve the 
required performance. Another 
approach is the development of 

Figure 1: Vehicle life cycle; Picture from WorldAutoSteel.
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gray box models where neural 
networks are combined with 
physical or empirical models. 
In certain cases, existing process 
models, such as finite element or 
finite volume models, provide good 
accuracy, but need to be faster 
to be run as a digital twin. Here, 
machine learning (ML) can bring 
a solution where the ML model is 
trained by running many different 
simulations with the numerical FEM 
model, resulting in a model which is 
both sufficiently accurate and fast. 

 • Novel robust sensing techniques 
which characterise the product 
properties in real-time. Digital 
transformation starts with the 
ability to produce reliable data 
with a frequency that captures 
the dynamics of the process. The 
use of real-time sensor data in 
combination with real-time process 
control models could fine-tune the 
process to obtain more uniform 
properties. The data generated by 
inline sensing instruments can also 
be used to validate existing models 
or train new data-driven process 
models discussed in the previous 
item. An example is illustrated in 
the case study below. 

 • Horizontal integration and 
supply-chain optimisation. With 
trustful sharing of product data with 
Tata Steel’s customers, they can 
dynamically optimise the settings 
of their processes. Customer 
processes typically involve hot- and 
cold-forming and welding. Ideally, 
the recommended process settings 

are outputs from a “digital twin” 
of these processes, comprising 
accurate descriptions of the 
interaction between “machine” and 
“material”.  

Similarly, when iron ore and steel 
scrap suppliers share data on 
compositional analysis with Tata 
Steel, processes can be better 
tuned, with associated cost and 
environmental benefits. 

 • Life-cycle assessment analysis 
(LCA). The coupling of process 
data from the chain of production 
facilities is also useful for analysing 
sustainability-related impact 
factors like the CO2 footprint, or 
water usage, for a given product 
or process. The need for these 
data will grow with the advent of 
the material passport to enforce 
enhanced circularity of materials. 
In the case of steels for automotive 
applications, the life cycle 
assessment approach applies not 
only to the steel of the car but also 
to all components and the entire 
cycle of its production, use and 
disposal, as illustrated in Figure 1. 

Case: inline sensing of 
microstructure of steel 
In the past 25 years, Tata Steel 
R&D has invested significantly in 
collaborative international research 
with universities and specialised high-
tech companies to develop sensing 
solutions which deliver non-destructively 
and in real-time information on the 
microstructure of steel being produced. 
These so-called “inline sensors” are 

mounted in the production line and 
measure contact-free on the steel strip 
which passes by at a production speed 
in the range of 2 – 20 m/s. Commonly, 
every 2 metres of strip, a measurement 
value is produced. For comparison, a 
coil of steel for automotive applications 
has a strip length in the order of 2000 
metres.  

An important complication in the 
technology development are the harsh 
conditions in which the sensors have to 
operate reliably: high strip temperature 
(up to 800 °C) and dust and cooling 
liquids, as depicted in Figure 2. These 
measurement conditions often guide 
the selection of the appropriate sensing 
technology, next to obvious factors 
such as the quantity to measure and 
the required performance. Due to their 
non-destructive and non-contact nature 
the inline sensors are typically based on 
magnetic or radiation principles. Figure 
3 shows a photo of a magnetic induction 
based sensor measuring the phase 
transformation in the hot strip mill in the 
conditions illustrated by Figure 2. This 
sensor technology is unique worldwide 
and only installed at Tata Steel in 
IJmuiden, hence providing significant 
competitive advantage.  

The data generated by these sensors 
prove to be particularly valuable for the 
development and reliable production of 
the newest generation steels, the so-
called “Advanced High Strength Steels” 
(AHSS), which provide significantly 
higher strength than the more 
conventional “High Strength Steels”. 
AHSS steels owe their high strength 
to the presence of hard metallurgical 
phases like “bainite” and “martensite”, 

Figure 2: Hot steel strip (orange on picture) cooled by water jets after hot rolling Figure 3: Phase transformation sensor operational in the hot strip mill.
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which are finely dispersed in the ferrite 
matrix. Figure 4 shows an example of 
such a complex phase microstructure 
as obtained by EBSD (electron back-
scatter diffraction) where different 
colours have accentuated the individual 
phases. When made from AHSS, the 
steel components used in cars and 
trucks deliver better safety performance 
and also can be made thinner, thereby 
saving weight which is beneficial for the 
reduction of CO2 emissions and energy 
use during service. 

Traditionally, new product development 
starts with theoretical modelling, 
experimental process simulations 
and product testing in the laboratory, 
followed by time-consuming plant 
trials where the process parameters 
are tuned. The recent installation and 
calibration of the array of the phase 
transformation sensors has enabled us 
to study in-situ the phase transformation 
behaviour as a function of time and 
cooling path. In this way, the time-
to-market for new products can be 
shortened. 

Figure 5 shows an example where 
first, the temperature of the steel 
strip is depicted over strip length for 
three positions along the cooling 
section of the hot strip mill. The 
middle plot indicates the amount 
of phase transformation measured 
by the induction sensors over strip 

length at the same sensor positions. 
These data have been combined 
with the strip speed (which increases 
for increasing strip length during the 
first ~1000 m of strip length) to yield 
the “transformation-over-time” curve 
as presented in the last plot. The 
transformation-over-time curve can be 
directly compared with predictions from 
metallurgical models and laboratory 
data for phase transformation, providing 
an evidence-based method for fast 
iteration to the definition of the factory 
process conditions that deliver the 
designed microstructure and the desired 
mechanical properties of the new steel 
grade. This is especially worthwhile for 
AHSS steels since their complicated 
multi-phase microstructure is much 
more sensitive to the exact temperature 
path and transformation trajectory than 
conventional steels. 

Conclusions and 
Outlook 
For the traditional manufacturing 
sectors with both a long history and a 
long supply chain, like the steel and 
car industries, digital transformation 
involves huge efforts and investments 
in organisational alignment, technology 
development and IT infrastructure. The 
drivers for the digital transformation are 
manifold: to stay competitive in a global 
market, both cost-wise and quality-

wise; to become more sustainable and 
provide insights into the ecological 
footprint of processes and products; and 
to prepare for the transformation to a 
circular economy, where there is a need 
to know the origin and composition 
of the re-taken end-of-life products. 
The significance of data, in particular 
high-quality and high-impact data, and 
the use of data-driven technologies will 
continue to grow in the next decade.  

This article highlighted our development 
and implementation of a unique, 
dedicated sensor technology that 
successfully delivers high-quality data. 
This significant achievement plays a 
pivotal role in facilitating the production 
of advanced high-strength steels, which 
help making cars safer and lighter, 
reducing their energy use and improving 
their CO2 footprint. 

Figure 4: Example of the microstructure of an AHSS; the green / red / 
blue colours indicate the ferrite / bainite / martensite respectively.

Figure 5: Top: Measured 
strip temperature over 
strip length of a single coil 
at three different positions; 
Middle and Bottom: 
Measured amount of 
phase transformation 
over strip length at the 
corresponding positions 
and over travel time. 
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