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I
n the era of Industry 4.0, collaborative 

robots are one of the main pillars enabling 

flexible automation. In particular, dual-
robot systems are increasingly seen as a 

promising trend of industrial automation for 

assembly and pick-and-place tasks. Dual-robot 
systems consist of two collaborating robot 

arms and offer advantageous characteristics. 

For instance, high redundancy can improve 

the flexibility in task manipulation, while 
synchronised manipulation can shorten the 

operation times. 

To implement a dual-robot system, much of 
efforts are made on task planning. The two arms 

need to be synchronised to each other in time 

and space to avoid collisions and to improve 

the efficiency in terms of the operation time. 
Additionally, peripheral components as well 

as workpieces or workpiece positioners must 

be considered to define feasible trajectories, 

i.e. sequences of six-dimensional positions 
in Cartesian space, for both robot arms. To 

take advantage from dual-robot systems 
economically, the effort for task planning must 

be automated as well, in order to significantly 
decrease the set-up time. Following this idea, 
this work proposes an AI-based solution for a 
dual-robot system which enables autonomous 
trajectory planning for a given pick-and-place 
task by minimising the set-up time and by 
avoiding collisions. 

A pick-and-place use case has been chosen as 
an illustrative example to verify the proposed 
algorithm. Within the use case, 16 cylindrical pins 

are palletised from a pallet to a turntable. The 

system consists of two KUKA KR 10 R1100 robots 

with six degree of freedom each. Both robots are 
equipped with two-finger grippers and share a 
common workspace. The system setup is shown 

in Figure 1. 

[...] each robot can perceive 
its environment and can 
adapt to changes - an 
ability that conventionally 
programmed manipulators 
exhibit only to a very 
limited extent.  
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Problem Statement 

The problem of robotic trajectory planning 
is the determination of six-dimensional pose 
sequences at a defined time step that the robot 
will approach with its tool center point (TCP) to 

perform a desired motion. On the one hand, 

robotic manipulation tasks generally exhibit 
a hierarchical structure. On the other hand, 

previous work demonstrates the suitability of 

AI-based trajectory planning for single robot 
setups. Our approach leverages and combines 

these two findings for multi-robot setups by 
designing a hierarchical control architecture 

that establishes a framework for multi-agent 
systems (see Figure 2 left): A superior manager 

logic supervises the fulfillment of the overall task 
and assigns subtasks to different specialised 

agents. Each individual agent is responsible 

for the trajectory planning of a particular robot 
at a particular time and is designed as a deep 

reinforcement learning (DRL) agent. 

Approach

The goal is to train agents in dedicated 

simulation environment to acquire sub-task-
specific skills utilising the reinforcement 
learning framework (see Figure 2 right). 

Accordingly, an agent receives information 

about the state of the robot in its working 

environment and, based on this, selects an 

action to move the robot in space. In this way, 

each robot can perceive its environment and can 

adapt to changes - an ability that conventionally 
programmed manipulators exhibit only to a very 
limited extent. In addition to the state and action 
space, a reward function needs to be defined 
that evaluates the agent’s actions in form of 

a numerical reward signal. The underlying 

algorithm uses this signal to adjust its internal 
policy – a mapping from states to actions – that 

is represented by an artificial neural network. 
Based on this continuous perceive-act-and-
adjust loop, the agent gradually optimises its 
trajectory planning in order to complete the 
sub-task in the most optimal manner regarding 
well-defined performance and quality criteria.

Once the required agents have been 

successfully trained, they are integrated into the 

conditional control structure that represents 

the multi-agent system. The resulting modular 
architecture of interchangeable and specialised 

agents is intended to foster the reusability 

of task-specific learning environments. The 
resulting ever-growing library promises to 
significantly reduce the development efforts for 
future multi-robot use cases. 

Figure 1: Components of the dual-robot system.
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Starting on the system architecture level, 

one result of the development process is 

a client server architecture that allows the 

communication between the Python learning 

environment, in which the manager logic and 

the intelligent control policies are implemented, 

and the robot simulation (see Figure 2 left). The 

client-server communication is responsible 
for sending the control commands to the 

simulation and for receiving the corresponding 

simulation responses. For the given dual robot 

use-case, the control structure includes two 
agents, one for each robot, that simultaneously 

palletise the cylindrical pins from the pallet on 

to the turntable. The learning environments in 

which the trajectory planners are trained are 
structured in the same way: The observation 

for each robot includes the Cartesian position 

of its TCP and a target position that represents 

either the pick or the place position of the 

currently considered pin. The action vector that 

is predicted by the artificial neural network is a 
six-dimensional Cartesian position command. 
The internal controller takes this command, 

performs inverse kinematics and drives the 

joints of the manipulator accordingly. Both 
robots are trained simultaneously in the same 

simulation to allow them to collaborate. The 

reward function that feedbacks evaluations of 

the taken actions to the agent, is designed to 

reward decreasing distances between TCP and 

target position as well as decreasing trajectory 
durations. As a result, the corresponding target 

positions are approached very time-efficiently, 
but the robots are also likely to collide with 

each other or with static objects within their 
workspaces. To avoid this highly undesirable 

behavior, a collision detection is further 

implemented and the corresponding digital 

collision signal is added to the reward function. 

By penalising collisions, the agents are explicitly 
trained to prevent undesirable contacts.

Results

Figure 3 shows the evolving reward signal 

over the course of approximately twelve hours 
of training: In the beginning, the reward is 

comparatively low and shows strong peaks. 

This is an indication that the agent is not yet 

able to complete the task and a large number 

of collisions occur. As training progresses, the 

reward increases, shows fewer peaks, and 

converges to the maximum total reward of 
zero. The fact that peaks still occur at later times 

is because of the agent’s internal exploratory 
behavior, which is being disabled during 

operation.

The final tests in the simulation show that 
the two robots perform collision-free motions 
within their workspaces and need 86.14 seconds 

for palletising the 16 pins. In comparison to 

a single, manually teached-in robot, this is a 
46 % improvement in terms of time. Thereby, 

it is demonstrated that simulation-based 
autonomous trajectory planning using 
reinforcement learning proves to be a promising 

alternative to conventional teaching, which for 

such more complex 

Figure 2: System architecture and manager-agent structure (left) 
and deep reinforcement learning control loop (right)
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multi-robot systems requires extensive manual 
efforts resulting in long-lasting ramp-up and 
downtime phases. In addition, the hierarchical 

and modular approach proves to be particularly 

efficient when dealing with further use cases: By 
reusing existing learning environments, which 
may need to be slightly adapted to new tasks, 

development times progressively decrease. 

Accordingly, the efforts are mainly reduced 

to deriving the higher-level control structure 
from the structure of the manipulation task, 

monitoring the training processes and validating 

the final multi-agent solution.

Conclusion

The presented approach shows that multi-
agent-systems based on deep reinforcement 
learning can enable efficient and full automated 
trajectory planning for dual-robot systems. 
Operation times can be decreased by 46 % in 

comparison to a single robot for the considered 

pick-and-place task. Future work will focus on a 
more complex dual mode manipulation task by 
handling a heavy component that exceeds the 
maximum payload of a single robot.

Figure 3: Evolvement of the reward signal 
received by one agent per episode over the 
entire training period of 1,000 episodes.

 • Simulations can be used for 

autonomous AI-based trajectory 
planning for dual robot systems

 • While setting up the system 

architecture and especially the 

communication between simulation 

and learning environment, keep 

complexities low at first and focus 
on a working infrastructure

 • Once the infrastructure functions, 

perform short adapt-train-evaluate 
cycles on the learning environments 

to obtain the desired agent skills

 • Even if trajectory planning is 
conducted autonomously, it will 

require an unneglectable amount of 

computational time
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